Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 595
Filtrar
1.
Toxins (Basel) ; 16(1)2024 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-38251271

RESUMO

µ-Conotoxins are small, potent pore-blocker inhibitors of voltage-gated sodium (NaV) channels, which have been identified as pharmacological probes and putative leads for analgesic development. A limiting factor in their therapeutic development has been their promiscuity for different NaV channel subtypes, which can lead to undesirable side-effects. This review will focus on four areas of µ-conotoxin research: (1) mapping the interactions of µ-conotoxins with different NaV channel subtypes, (2) µ-conotoxin structure-activity relationship studies, (3) observed species selectivity of µ-conotoxins and (4) the effects of µ-conotoxin disulfide connectivity on activity. Our aim is to provide a clear overview of the current status of µ-conotoxin research.


Assuntos
Conotoxinas , Canais de Sódio Disparados por Voltagem , Conotoxinas/farmacologia , Dissulfetos , Relação Estrutura-Atividade
2.
Mar Drugs ; 22(1)2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38276651

RESUMO

Chemotherapy-induced peripheral neuropathy (CIPN) is a dose-limiting painful neuropathy that occurs commonly during cancer management, which often leads to the discontinuation of medication. Previous studies suggest that the α9α10 nicotinic acetylcholine receptor (nAChR)-specific antagonist αO-conotoxin GeXIVA[1,2] is effective in CIPN models; however, the related mechanisms remain unclear. Here, we analyzed the preventive effect of GeXIVA[1,2] on neuropathic pain in the long-term oxaliplatin injection-induced CIPN model. At the end of treatment, lumbar (L4-L6) spinal cord was extracted, and RNA sequencing and bioinformatic analysis were performed to investigate the potential genes and pathways related to CIPN and GeXIVA[1,2]. GeXIVA[1,2] inhibited the development of mechanical allodynia induced by chronic oxaliplatin treatment. Repeated injections of GeXIVA[1,2] for 3 weeks had no effect on the mice's normal pain threshold or locomotor activity and anxiety-like behavior, as evaluated in the open field test (OFT) and elevated plus maze (EPM). Our RNA sequencing results identified 209 differentially expressed genes (DEGs) in the CIPN model, and simultaneously injecting GeXIVA[1,2] with oxaliplatin altered 53 of the identified DEGs. These reverted genes were significantly enriched in immune-related pathways represented by the cytokine-cytokine receptor interaction pathway. Our findings suggest that GeXIVA[1,2] could be a potential therapeutic compound for chronic oxaliplatin-induced CIPN management.


Assuntos
Antineoplásicos , Conotoxinas , Neuralgia , Camundongos , Animais , Oxaliplatina/efeitos adversos , Conotoxinas/farmacologia , Neuralgia/induzido quimicamente , Neuralgia/tratamento farmacológico , Neuralgia/genética , Hiperalgesia/induzido quimicamente , Hiperalgesia/tratamento farmacológico , Hiperalgesia/genética , Modelos Animais de Doenças , Antagonistas Nicotínicos/farmacologia , Expressão Gênica , Antineoplásicos/efeitos adversos
3.
Protein Expr Purif ; 215: 106405, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37979629

RESUMO

α-Conotoxin ImI is a selective antagonist of alpha7 nicotinic acetylcholine receptor (α7 nAChR) that is involved in cancer development. Human alpha fetoprotein domain 3 (AFP3) is a prototype of anticancer agents. In an effort to design drugs for anticancer treatments, we fused the ImI peptide to AFP3 as a fusion protein for testing. The fusion protein (ImI-AFP3) was highly expressed in the insect Bac-to-Bac system. The purified fusion protein was found to have improved anticancer activity and synergized with the drug gefitinib to inhibit the growth and migration of A549 and NCI-H1299 lung cancer cells. Our data have demonstrated that the recombinant protein ImI-AFP3 is a promising candidate for drug development to suppress lung cancer cell growth, especially to suppress hepatoid adenocarcinoma of the lung (HAL) cell growth.


Assuntos
Conotoxinas , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Conotoxinas/química , Conotoxinas/metabolismo , Conotoxinas/farmacologia , Proteínas Recombinantes/genética , Proteínas Recombinantes/farmacologia , Pulmão
4.
ACS Chem Neurosci ; 14(24): 4311-4322, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38051211

RESUMO

Understanding the determinants of α-conotoxin (α-CTX) selectivity for different nicotinic acetylcholine receptor (nAChR) subtypes is a prerequisite for the design of tool compounds to study nAChRs. However, selectivity optimization of these small, disulfide-rich peptides is difficult not only because of an absence of α-CTX/nAChR co-structures but also because it is challenging to predict how a mutation to an α-CTX will alter its potency and selectivity. As a prototypical system to investigate selectivity, we employed the α-CTX LvIA that is 25-fold selective for the α3ß2 nAChR over the related α3ß4 nAChR subtype, which is a target for nicotine addiction. Using two-electrode voltage clamp electrophysiology, we identified LvIA[D11R] that is 2-fold selective for the α3ß4 nAChR, reversing the subtype preference. This effect is specifically due to the change in charge and not shape of LvIA[D11R], as substitution of D11 with citrulline retains selectivity for the α3ß2 nAChR. Furthermore, LvIA[D11K] shows a stronger reversal, with 4-fold selectivity for the α3ß4 nAChR. Motivated by these findings, using site-directed mutagenesis, we found that ß2[K79A] (I79 on ß4), but not ß2[K78A] (N78 on ß4), largely restores the potency of basic mutants at position 11. Finally, to understand the structural basis of this effect, we used AlphaFold2 to generate models of LvIA in complex with both nAChR subtypes. Both models confirm the plausibility of an electrostatic mechanism to explain the data and also reproduce a broad range of potency and selectivity structure-activity relationships for LvIA mutants, as measured using free energy perturbation simulations. Our work highlights how electrostatic interactions can drive α-CTX selectivity and may serve as a strategy for optimizing the selectivity of LvIA and other α-CTXs.


Assuntos
Conotoxinas , Receptores Nicotínicos , Conotoxinas/genética , Conotoxinas/farmacologia , Eletricidade Estática , Receptores Nicotínicos/genética , Mutação/genética , Peptídeos , Antagonistas Nicotínicos/farmacologia
5.
Biochemistry ; 62(23): 3373-3382, 2023 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-37967580

RESUMO

α-Conotoxin GI is a competitive blocker of muscle-type acetylcholine receptors and holds the potential for being developed as a molecular probe or a lead compound for drug discovery. In this study, four fatty acid-modified α-conotoxin GI analogues of different lengths were synthesized by using a fatty acid modification strategy. Then, we performed a series of in vitro stability assays, albumin binding assays, and pharmacological activity assays to evaluate these modified mutants. The experimental results showed that the presence of fatty acids significantly enhanced the in vitro stability and albumin binding ability of α-conotoxin GI and that this effect was proportional to the length of the fatty acids used. Pharmacological activity tests showed that the modified mutants maintained a good acetylcholine receptor antagonistic activity. The present study shows that fatty acid modification can be an effective strategy to significantly improve conotoxin stability and albumin binding efficiency while maintaining the original targeting ion channel activity.


Assuntos
Conotoxinas , Receptores Nicotínicos , Receptores Nicotínicos/química , Receptores Nicotínicos/metabolismo , Sequência de Aminoácidos , Conotoxinas/farmacologia , Conotoxinas/química , Ácidos Graxos
6.
Protein Pept Lett ; 30(11): 913-929, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38008946

RESUMO

This review describes the specific features of families of Conus venom peptides (conotoxins or conopeptides) that represent twelve pharmacological classes. Members of these conopeptide families are targeted to voltage-gated ion channels, such as calcium, sodium, and potassium channels. The conopeptides covered in this work include omega-conotoxins and contryphans with calcium channels as targets; mu-conotoxins, muO-conotoxins, muP-conotoxins, delta-conotoxins and iota-conotoxin with sodium channels as targets; and kappa-conotoxins, kappaM-conotoxins, kappaO-conotoxin, conkunitzins, and conorfamide with potassium channels as targets. The review covers the peptides that have been characterized over the last two decades with respect to their physiological targets and/or potential pharmacological applications, or those that have been discovered earlier but with noteworthy features elucidated in more recent studies. Some of these peptides have the potential to be developed as therapies for nerve, muscle, and heart conditions associated with dysfunctions in voltage-gated ion channels. The gating process of an ion channel subtype in neurons triggers various biological activities, including regulation of gene expression, contraction, neurotransmitter secretion, and transmission of electrical impulses. Studies on conopeptides and their interactions with calcium, sodium, and potassium channels provide evidence for Conus peptides as neuroscience research probes and therapeutic leads.


Assuntos
Conotoxinas , Caramujo Conus , Animais , Caramujo Conus/metabolismo , Cálcio/metabolismo , Canais de Potássio/metabolismo , Sódio/metabolismo , Conotoxinas/farmacologia , Conotoxinas/química , Peptídeos/química
7.
Cell Mol Life Sci ; 80(10): 287, 2023 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-37689602

RESUMO

Voltage-gated sodium (NaV) channels are transmembrane proteins that play a critical role in electrical signaling in the nervous system and other excitable tissues. µ-Conotoxins are peptide toxins from the venoms of marine cone snails (genus Conus) that block NaV channels with nanomolar potency. Most species of the subgenera Textilia and Afonsoconus are difficult to acquire; therefore, their venoms have yet to be comprehensively interrogated for µ-conotoxins. The goal of this study was to find new µ-conotoxins from species of the subgenera Textilia and Afonsoconus and investigate their selectivity at human NaV channels. Using RNA-seq of the venom gland of Conus (Textilia) bullatus, we identified 12 µ-conotoxin (or µ-conotoxin-like) sequences. Based on these sequences we designed primers which we used to identify additional µ-conotoxin sequences from DNA extracted from historical specimens of species from Textilia and Afonsoconus. We synthesized six of these µ-conotoxins and tested their activity on human NaV1.1-NaV1.8. Five of the six synthetic peptides were potent blockers of human NaV channels. Of these, two peptides (BuIIIB and BuIIIE) were potent blockers of hNaV1.3. Three of the peptides (BuIIIB, BuIIIE and AdIIIA) had submicromolar activity at hNaV1.7. This study serves as an example of the identification of new peptide toxins from historical DNA and provides new insights into structure-activity relationships of µ-conotoxins with activity at hNaV1.3 and hNaV1.7.


Assuntos
Conotoxinas , Caramujo Conus , Toxinas Biológicas , Humanos , Animais , Conotoxinas/farmacologia , Proteínas de Membrana , Canais de Sódio/genética
8.
Bioconjug Chem ; 34(12): 2194-2204, 2023 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-37748043

RESUMO

α6ß4* nicotinic acetylcholine receptor (nAChR) (* represents the possible presence of additional subunits) is mainly distributed in the central and peripheral nervous system and is associated with neurological diseases, such as neuropathic pain; however, the ability to explore its function and distribution is limited due to the lack of pharmacological tools. As one of the analogs of α-conotoxin (α-CTx) LvIC from Conus lividus, [D1G, Δ14Q]LvIC (Lv) selectively and potently blocks α6/α3ß4 nAChR (α6/α3 represents a chimera). Here, we synthesized three fluorescent analogs of Lv by connecting fluorescent molecules 6-carboxytetramethylrhodamine succinimidyl ester (6-TAMRA-SE, R), Cy3 NHS ester (Cy3, C) and BODIPY-FL NHS ester (BDP, B) to the N-terminus of the peptide and obtained Lv-R, Lv-C, and Lv-B, respectively. The potency and selectivity of three fluorescent peptides were evaluated using two-electrode voltage-clamp recording on nAChR subtypes expressed in Xenopus laevis oocytes, and the potency and selectivity of Lv-B were almost maintained with the half-maximal inhibition (IC50) of 64 nM. Then, we explored the stability of Lv-B in artificial cerebrospinal fluid and stained rat brain slices with Lv-B. The results indicated that the stability of Lv-B was slightly improved compared to that of native Lv. Additionally, we detected the distribution of the α6ß4* nAChR subtype in the cerebral cortex using green fluorescently labeled peptide and fluorescence microscopy. Our findings not only provide a visualized pharmacological tool for exploring the distribution of the α6ß4* nAChR subtype in various situ tissues and organs but also extend the application of α-CTx [D1G, Δ14Q]LvIC to demonstrate the involvement of α6ß4 nAChR function in pathophysiology and pharmacology.


Assuntos
Conotoxinas , Caramujo Conus , Receptores Nicotínicos , Ratos , Animais , Receptores Nicotínicos/química , Conotoxinas/química , Conotoxinas/farmacologia , Caramujo Conus/química , Peptídeos/química , Ésteres
9.
PLoS Biol ; 21(8): e3002217, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37535677

RESUMO

Animal venom peptides represent valuable compounds for biomedical exploration. The venoms of marine cone snails constitute a particularly rich source of peptide toxins, known as conotoxins. Here, we identify the sequence of an unusually large conotoxin, Mu8.1, which defines a new class of conotoxins evolutionarily related to the well-known con-ikot-ikots and 2 additional conotoxin classes not previously described. The crystal structure of recombinant Mu8.1 displays a saposin-like fold and shows structural similarity with con-ikot-ikot. Functional studies demonstrate that Mu8.1 curtails calcium influx in defined classes of murine somatosensory dorsal root ganglion (DRG) neurons. When tested on a variety of recombinantly expressed voltage-gated ion channels, Mu8.1 displayed the highest potency against the R-type (Cav2.3) calcium channel. Ca2+ signals from Mu8.1-sensitive DRG neurons were also inhibited by SNX-482, a known spider peptide modulator of Cav2.3 and voltage-gated K+ (Kv4) channels. Our findings highlight the potential of Mu8.1 as a molecular tool to identify and study neuronal subclasses expressing Cav2.3. Importantly, this multidisciplinary study showcases the potential of uncovering novel structures and bioactivities within the largely unexplored group of macro-conotoxins.


Assuntos
Conotoxinas , Camundongos , Animais , Conotoxinas/farmacologia , Conotoxinas/química , Canais de Cálcio , Peptídeos/química , Células Receptoras Sensoriais/metabolismo , Caramujos
10.
Int J Mol Sci ; 24(14)2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37511269

RESUMO

The first conotoxin affecting the voltage-gated potassium channels of the EAG family was identified and characterized from the venom of the vermivorous species Conus spurius from the Gulf of Mexico. This conopeptide, initially named Cs68 and later designated κO-SrVIA, is extremely hydrophobic and comprises 31 amino acid residues, including six Cysteines in the framework VI/VII, and a free C-terminus. It inhibits the currents mediated by two human EAG subtypes, Kv10.1 (IC50 = 1.88 ± 1.08 µM) and Kv11.1 (IC50 = 2.44 ± 1.06 µM), and also the human subtype Kv1.6 (IC50 = 3.6 ± 1.04 µM). Despite its clear effects on potassium channels, it shares a high sequence identity with δ-like-AtVIA and δ-TsVIA. Also, κO-SrVIA is the third conopeptide from the venom of C. spurius with effects on potassium channels, and the seventh conotoxin that blocks Kv1.6 channels.


Assuntos
Conotoxinas , Caramujo Conus , Canais de Potássio Éter-A-Go-Go , Animais , Humanos , Sequência de Aminoácidos , Conotoxinas/farmacologia , Conotoxinas/química , Caramujo Conus/química , Canais de Potássio Éter-A-Go-Go/efeitos dos fármacos , Canais de Potássio Éter-A-Go-Go/metabolismo , Canais de Potássio Éter-A-Go-Go/toxicidade , Peptídeos/química
11.
Mar Drugs ; 21(6)2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37367681

RESUMO

α-Conotoxins are well-known probes for the characterization of the various subtypes of nicotinic acetylcholine receptors (nAChRs). Identifying new α-conotoxins with different pharmacological profiles can provide further insights into the physiological or pathological roles of the numerous nAChR isoforms found at the neuromuscular junction, the central and peripheral nervous systems, and other cells such as immune cells. This study focuses on the synthesis and characterization of two novel α-conotoxins obtained from two species endemic to the Marquesas Islands, namely Conus gauguini and Conus adamsonii. Both species prey on fish, and their venom is considered a rich source of bioactive peptides that can target a wide range of pharmacological receptors in vertebrates. Here, we demonstrate the versatile use of a one-pot disulfide bond synthesis to achieve the α-conotoxin fold [Cys 1-3; 2-4] for GaIA and AdIA, using the 2-nitrobenzyl (NBzl) protecting group of cysteines for effective regioselective oxidation. The potency and selectivity of GaIA and AdIA against rat nicotinic acetylcholine receptors were investigated electrophysiologically and revealed potent inhibitory activities. GaIA was most active at the muscle nAChR (IC50 = 38 nM), whereas AdIA was most potent at the neuronal α6/3 ß2ß3 subtype (IC50 = 177 nM). Overall, this study contributes to a better understanding of the structure-activity relationships of α-conotoxins, which may help in the design of more selective tools.


Assuntos
Conotoxinas , Caramujo Conus , Receptores Nicotínicos , Animais , Ratos , Conotoxinas/farmacologia , Conotoxinas/química , Caramujo Conus/química , Caramujo Conus/fisiologia , Antagonistas Nicotínicos/farmacologia , Caramujos , Polinésia
12.
Angew Chem Int Ed Engl ; 62(29): e202302812, 2023 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-37148162

RESUMO

Ziconotide (ω-conotoxin MVIIA) is an approved analgesic for the treatment of chronic pain. However, the need for intrathecal administration and adverse effects have limited its widespread application. Backbone cyclization is one way to improve the pharmaceutical properties of conopeptides, but so far chemical synthesis alone has been unable to produce correctly folded and backbone cyclic analogues of MVIIA. In this study, an asparaginyl endopeptidase (AEP)-mediated cyclization was used to generate backbone cyclic analogues of MVIIA for the first time. Cyclization using six- to nine-residue linkers did not perturb the overall structure of MVIIA, and the cyclic analogues of MVIIA showed inhibition of voltage-gated calcium channels (CaV 2.2) and substantially improved stability in human serum and stimulated intestinal fluid. Our study reveals that AEP transpeptidases are capable of cyclizing structurally complex peptides that chemical synthesis cannot achieve and paves the way for further improving the therapeutic value of conotoxins.


Assuntos
Conotoxinas , ômega-Conotoxinas , Humanos , ômega-Conotoxinas/farmacologia , ômega-Conotoxinas/uso terapêutico , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Conotoxinas/farmacologia , Canais de Cálcio/química , Bloqueadores dos Canais de Cálcio/farmacologia
13.
Int J Mol Sci ; 24(10)2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37239959

RESUMO

Conotoxins are widely distributed and important for studying ligand-gated ion channels. TxIB, a conotoxin consisting of 16 amino acids derived from Conus textile, is a unique selective ligand that blocks rat α6/α3ß2ß3 nAChR (IC50 = 28 nM) without affecting other rat subtypes. However, when the activity of TxIB against human nAChRs was examined, it was unexpectedly found that TxIB had a significant blocking effect on not only human α6/α3ß2ß3 nAChR but also human α6/α3ß4 nAChR, with an IC50 of 537 nM. To investigate the molecular mechanism of this species specificity and to establish a theoretical basis for drug development studies of TxIB and its analogs, different amino acid residues between human and rat α6/α3 and ß4 nAChR subunits were identified. Each residue of the human species was then substituted with the corresponding residue of the rat species via PCR-directed mutagenesis. The potencies of TxIB towards the native α6/α3ß4 nAChRs and their mutants were evaluated through electrophysiological experiments. The results showed that the IC50 of TxIB against h[α6V32L, K61R/α3]ß4L107V, V115I was 22.5 µM, a 42-fold decrease in potency compared to the native hα6/α3ß4 nAChR. Val-32 and Lys-61 in the human α6/α3 subunit and Leu-107 and Val-115 in the human ß4 subunit, together, were found to determine the species differences in the α6/α3ß4 nAChR. These results also demonstrate that the effects of species differences between humans and rats should be fully considered when evaluating the efficacy of drug candidates targeting nAChRs in rodent models.


Assuntos
Conotoxinas , Caramujo Conus , Receptores Nicotínicos , Ratos , Humanos , Animais , Especificidade da Espécie , Conotoxinas/farmacologia , Conotoxinas/química , Caramujo Conus/química , Reação em Cadeia da Polimerase , Receptores Nicotínicos/metabolismo
14.
Mar Drugs ; 21(4)2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-37103349

RESUMO

Marine toxins have potent actions on diverse sodium ion channels regulated by transmembrane voltage (voltage-gated ion channels) or by neurotransmitters (nicotinic acetylcholine receptor channels). Studies of these toxins have focused on varied aspects of venom peptides ranging from evolutionary relationships of predator and prey, biological actions on excitable tissues, potential application as pharmacological intervention in disease therapy, and as part of multiple experimental approaches towards an understanding of the atomistic characterization of ion channel structure. This review examines the historical perspective of the study of conotoxin peptides active on sodium channels gated by transmembrane voltage, which has led to recent advances in ion channel research made possible with the exploitation of the diversity of these marine toxins.


Assuntos
Conotoxinas , Canais de Sódio Disparados por Voltagem , Conotoxinas/farmacologia , Conotoxinas/química , Canais Iônicos , Peptídeos/farmacologia , Membrana Celular
15.
Mar Drugs ; 21(3)2023 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-36976203

RESUMO

The venom of marine cone snails is mainly composed of peptide toxins called conopeptides, among which conotoxins represent those that are disulfide-rich. Publications on conopeptides frequently state that conopeptides attract considerable interest for their potent and selective activity, but there has been no analysis yet that formally quantifies the popularity of the field. We fill this gap here by providing a bibliometric analysis of the literature on cone snail toxins from 2000 to 2022. Our analysis of 3028 research articles and 393 reviews revealed that research in the conopeptide field is indeed prolific, with an average of 130 research articles per year. The data show that the research is typically carried out collaboratively and worldwide, and that discoveries are truly a community-based effort. An analysis of the keywords provided with each article revealed research trends, their evolution over the studied period, and important milestones. The most employed keywords are related to pharmacology and medicinal chemistry. In 2004, the trend in keywords changed, with the pivotal event of that year being the approval by the FDA of the first peptide toxin drug, ziconotide, a conopeptide, for the treatment of intractable pain. The corresponding research article is among the top ten most cited articles in the conopeptide literature. From the time of that article, medicinal chemistry aiming at engineering conopeptides to treat neuropathic pain ramped up, as seen by an increased focus on topological modifications (e.g., cyclization), electrophysiology, and structural biology.


Assuntos
Conotoxinas , Caramujo Conus , Animais , Caramujo Conus/química , Conotoxinas/farmacologia , Conotoxinas/química , Peptídeos/farmacologia , Peptídeos/uso terapêutico , Peptídeos/química , Caramujos
16.
Pharmacol Res ; 191: 106747, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37001708

RESUMO

The pentameric nicotinic acetylcholine receptors (nAChRs) are typically classed as muscle- or neuronal-type, however, the latter has also been reported in non-neuronal cells. Given their broad distribution, nAChRs mediate numerous physiological and pathological processes including synaptic transmission, presynaptic modulation of transmitter release, neuropathic pain, inflammation, and cancer. There are 17 different nAChR subunits and combinations of these subunits produce subtypes with diverse pharmacological properties. The expression and role of some nAChR subtypes have been extensively deciphered with the aid of knock-out models. Many nAChR subtypes expressed in heterologous systems are selectively targeted by the disulfide-rich α-conotoxins. α-Conotoxins are small peptides isolated from the venom of cone snails, and a number of them have potential pharmaceutical value.


Assuntos
Conotoxinas , Receptores Nicotínicos , Conotoxinas/farmacologia , Conotoxinas/química , Conotoxinas/metabolismo , Receptores Nicotínicos/metabolismo , Peptídeos/farmacologia , Membrana Celular/metabolismo , Neurônios/metabolismo , Antagonistas Nicotínicos/farmacologia , Antagonistas Nicotínicos/uso terapêutico
17.
Mar Drugs ; 21(2)2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36827103

RESUMO

χ-Conotoxins are known for their ability to selectively inhibit norepinephrine transporters, an ability that makes them potential leads for treating various neurological disorders, including neuropathic pain. PnID, a peptide isolated from the venom of Conus pennaceus, shares high sequence homology with previously characterized χ-conotoxins. Whereas previously reported χ-conotoxins seem to only have a single native disulfide bonding pattern, PnID has three native isomers due to the formation of different disulfide bond patterns during its maturation in the venom duct. In this study, the disulfide connectivity and three-dimensional structure of these disulfide isomers were explored using regioselective synthesis, chromatographic coelution, and solution-state nuclear magnetic resonance spectroscopy. Of the native isomers, only the isomer with a ribbon disulfide configuration showed pharmacological activity similar to other χ-conotoxins. This isomer inhibited the rat norepinephrine transporter (IC50 = 10 ± 2 µM) and has the most structural similarity to previously characterized χ-conotoxins. In contrast, the globular isoform of PnID showed more than ten times less activity against this transporter and the beaded isoform did not display any measurable biological activity. This study is the first report of the pharmacological and structural characterization of an χ-conotoxin from a species other than Conus marmoreus and is the first report of the existence of natively-formed conotoxin isomers.


Assuntos
Conotoxinas , Caramujo Conus , Ratos , Animais , Conotoxinas/farmacologia , Dissulfetos/química , Caramujo Conus/química , Peptídeos/química , Espectroscopia de Ressonância Magnética
18.
Mar Drugs ; 21(2)2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36827123

RESUMO

Elevenins are peptides found in a range of organisms, including arthropods, annelids, nematodes, and molluscs. They consist of 17 to 19 amino acid residues with a single conserved disulfide bond. The subject of this study, elevenin-Vc1, was first identified in the venom of the cone snail Conus victoriae (Gen. Comp. Endocrinol. 2017, 244, 11-18). Although numerous elevenin sequences have been reported, their physiological function is unclear, and no structural information is available. Upon intracranial injection in mice, elevenin-Vc1 induced hyperactivity at doses of 5 or 10 nmol. The structure of elevenin-Vc1, determined using nuclear magnetic resonance spectroscopy, consists of a short helix and a bend region stabilised by the single disulfide bond. The elevenin-Vc1 structural fold is similar to that of α-conotoxins such as α-RgIA and α-ImI, which are also found in the venoms of cone snails and are antagonists at specific subtypes of nicotinic acetylcholine receptors (nAChRs). In an attempt to mimic the functional motif, Asp-Pro-Arg, of α-RgIA and α-ImI, we synthesised an analogue, designated elevenin-Vc1-DPR. However, neither elevenin-Vc1 nor the analogue was active at six different human nAChR subtypes (α1ß1εδ, α3ß2, α3ß4, α4ß2, α7, and α9α10) at 1 µM concentrations.


Assuntos
Conotoxinas , Caramujo Conus , Receptores Nicotínicos , Camundongos , Humanos , Animais , Conotoxinas/farmacologia , Caramujo Conus/metabolismo , Peçonhas , Receptores Nicotínicos/metabolismo , Peptídeos/metabolismo , Antagonistas Nicotínicos/farmacologia
19.
J Biol Chem ; 299(4): 103068, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36842500

RESUMO

µ-Conotoxin KIIIA, a selective blocker of sodium channels, has strong inhibitory activity against several Nav isoforms, including Nav1.7, and has potent analgesic effects, but it contains three pairs of disulfide bonds, making structural modification difficult and synthesis complex. To circumvent these difficulties, we designed and synthesized three KIIIA analogues with one disulfide bond deleted. The most active analogue, KIIIA-1, was further analyzed, and its binding pattern to hNav1.7 was determined by molecular dynamics simulations. Guided by the molecular dynamics computational model, we designed and tested 32 second-generation and 6 third-generation analogues of KIIIA-1 on hNav1.7 expressed in HEK293 cells. Several analogues showed significantly improved inhibitory activity on hNav1.7, and the most potent peptide, 37, was approximately 4-fold more potent than the KIIIA Isomer I and 8-fold more potent than the wildtype (WT) KIIIA in inhibiting hNav1.7 current. Intraperitoneally injected 37 exhibited potent in vivo analgesic activity in a formalin-induced inflammatory pain model, with activity reaching ∼350-fold of the positive control drug morphine. Overall, peptide 37 has a simplified disulfide-bond framework and exhibits potent in vivo analgesic effects and has promising potential for development as a pain therapy in the future.


Assuntos
Analgésicos , Conotoxinas , Canal de Sódio Disparado por Voltagem NAV1.7 , Bloqueadores do Canal de Sódio Disparado por Voltagem , Humanos , Analgésicos/farmacologia , Analgésicos/química , Conotoxinas/química , Conotoxinas/farmacologia , Dissulfetos/metabolismo , Células HEK293 , Simulação de Dinâmica Molecular , Dor/induzido quimicamente , Dor/tratamento farmacológico , Peptídeos/farmacologia , Peptídeos/metabolismo , Bloqueadores do Canal de Sódio Disparado por Voltagem/química , Bloqueadores do Canal de Sódio Disparado por Voltagem/farmacologia
20.
Mar Drugs ; 20(12)2022 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-36547920

RESUMO

Conus regius is a marine venomous mollusk of the Conus genus that captures its prey by injecting a rich cocktail of bioactive disulfide bond rich peptides called conotoxins. These peptides selectively target a broad range of ion channels, membrane receptors, transporters, and enzymes, making them valuable pharmacological tools and potential drug leads. C. regius-derived conotoxins are particularly attractive due to their marked potency and selectivity against specific nicotinic acetylcholine receptor subtypes, whose signalling is involved in pain, cognitive disorders, drug addiction, and cancer. However, the species-specific differences in sensitivity and the low stability and bioavailability of these conotoxins limit their clinical development as novel therapeutic agents for these disorders. Here, we give an overview of the main pharmacological features of the C. regius-derived conotoxins described so far, focusing on the molecular mechanisms underlying their potential therapeutic effects. Additionally, we describe adoptable chemical engineering solutions to improve their pharmacological properties for future potential clinical translation.


Assuntos
Conotoxinas , Caramujo Conus , Receptores Nicotínicos , Animais , Conotoxinas/farmacologia , Conotoxinas/química , Organismos Aquáticos , Caramujo Conus/química , Peptídeos/farmacologia , Antagonistas Nicotínicos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...